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IoT: a System View 

Battery + Harvesting powered  
  a few mW  power envelope 

Long range, low BW 

Short range, BW 

Low rate (periodic) data 

SW update, commands 

Transmit 

Idle:  ~1µW 
Active:  ~ 50mW 

Analyze and Classify 

µController 

IOs 

1 ÷ 25 MOPS 
1 ÷ 10 mW 

e.g. CotrexM 

Sense 

MEMS IMU 

MEMS Microphone 

ULP Imager 

100 µW	  ÷	  2 mW 

EMG/ECG/EIT 

L2 Memory 

1 ÷ 2000 MOPS 
1 ÷ 10 mW 
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How efficient? 

3 [RuchIBM11] 

1012ops/J 
↓ 

1pJ/op 
↓ 

1GOPS/mW 
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How to do that 

Moore’s law has slowed 
to roughly 2 ½ years or 
roughly 30 months (25% 
increase in the time 
between semiconductor 
process nodes) 



 Minimum energy operation 
Source: Vivek De, INTEL – Date 2013 

Near-Threshold Computing (NTC):  
1.  Don’t waste energy pushing devices in strong inversion 

2.  Recover performance with parallel execution 
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PULP – Parallel Ultra Low Power  



Micro-MMU (demux) 

L1	  TCDM+T&S	  MB0	   MBM	  

.	  .	  .	  .	  .	  

Near-Threshold Multiprocessing 

4-stage, in-order ORISC  

I$	  I$B0	   I$Bk	  

Shared L1 I$ with Multi-instruction load 

IL0	   IL0	   Private Loop/Prefetch Buffer 

Open Source Hardware & Software 

Shared L1 DataMem + Atomic Variables 

NT but parallel  Max. Energy efficiency when Active + strong PM for (partial) idleness 

PE0	   PEN-‐1	  

DMA	  

Tightly Coupled DMA 

Periph	  
+ExtM	  

2 ..16 Cores  
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Technology UTBB FD-SOI 28nm 

Transistors Flip well 
L = 24 nm 

Cluster area 1.3 mm2 

VDD range 
(memories) 

0.32V - 1.15V 
(0.45 – 1.15V) 

BB  
range 

0V - 1.75V 

SRAM 
macros 

8 x 32 kbit (TCDM) 

SCM  
macros 

16x4 kbit (TCDM) 
4x 2x4 kbit (I$) 

Gates 200K 

Frequency 
range 

NO BB: 40.5-710 MHz  
MAX FBB: 63.5 - 825 MHz 

Power  
range 

NO FBB: 0.56 - 85 mW 
MAX FBB: 6.9 - 480 mW 

PULP Chips 

ISSCC15 (student presentations, Hot Chips 15, ISSCC16 (paper+student presentation) 
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Variability! 

Temperature awareness BB/leakage management is essential 
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Synthesis Challenge 
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  An extensive set of parameters to consider: 
  Supplies, Poly biasing, Body biasing, Gate sizing 
  Subject to temperature, reliability, mission profile constraints 

(Vdd, Pb, BB) choice becomes a power-delay trade off exercise 

Target Frequency 



  An optimized design means: 
  Maximize performance for given power  
  Minimize power for given performance 
  Area constraint 

  The optimum vector is a function (Vdd, Pb, BB) 
  Strongly dependent on chosen corners  
  Static + Dynamic 

Optimization and Trade-off 
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  Conditions 
  28nm UTBB FDSOI 
  VDD

min (0.5V) < VDD  < VDD
max  (1.3V)  

   Pb 
min (0) <  Pb    < Pb 

max  (16nm)    
  Bb 

min (0) < Bb    < Bb 
max (2.0V) 

  Pdyn/Pstat ratio = 50%  
  Power,Perf corners 

Non optimized 
 design 

Optimum  
in speed and power Po

w
er

 (F
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5C

) –
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Freq  (SS 125C) – a.u 
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Dynamic Body Bias 

Dynamic adaptation can also 
be used to  «remove» 
extremely adverse  corners and 
ease MC-MM optimization 



ULP Bottleneck: Memory 
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  “Standard” 6T SRAMs: 
  High VDDMIN 
  Bottleneck for energy efficiency 

  Near-Threshold SRAMs (8T) 
  Lower VDDMIN 
  Area/timing overhead (25%-50%) 
  High active energy 
  Low technology portability 

  Standard Cell Memories: 
  Wide supply voltage range 
  Lower read/write energy (2x - 4x) 
  Easy technology portability 
  Major area overhead (2x) 

2x-4x 
256x32 6T SRAMS vs. SCM 

Need help exploring memory tradeoffs! 



Static vs. Dynamic again… 

L2 
MEMORY 

PERIPHER
ALS 
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VOLTAGE	  
DOMAIN	  
(0.8V)	  

INSTRUCTION	  BUS	  
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DMA 
... 
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to RMUs 

... 
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#0  

SCM 
#M-1  
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#1 

SRAM	  VOLTAGE	  DOMAIN	  (0.5V	  –	  0.8V)	  

Hybrid 
memory 
system 
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Approximate Computing to the Rescue 



Approximate  Adequate 

Less-than-perfect results perceived as correct by the users 
e.g. image processing (filtering) 

RGB to GRAYSCALE RGB to GRAYSCALE (+ 10% error) 

Approximation is not always acceptable 
 Application and program phase dependent! 
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Approximate Storage? 

  Retention voltage 

  Probability of flip-bit error on a single bit during read/
write operations 

Retention 
SCM 0.25V 
6T-SRAM 0.29V 

Voltage (V) 0.50 0.55 0.60 0.65 0.70 0.75 0.80 
P(flip-bit) SCM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

P(flip-bit) 6T 0.0037 0.0012 0.0003 5.24e-5 4.35e-6 4.16e-8 0.0 

Energy vs. Precision tradeoff  big range! 
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Acceleration 



Recovering more silicon efficiency 

1 > 100 3 6 

CPU GPGPU HW IP 

GOPS/W  

Accelerator Gap 

SW HW Mixed 

Throughput 
Computing 

General-purpose 
Computing 

Closing The Accelerator Efficiency Gap with Agile Customization 
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Learn to Accelerate 

  Brain-inspired (deep convolutional networks) systems are 
high performers in many tasks over many domains 

Image recognition 
[Russakovsky et al., 2014] 

Speech recognition 
[Hannun et al., 2014] 

  Flexible acceleration: learned CNN weights are “the program” 

CNN:  
93.4% accuracy 
(Imagenet 2014) 
Human:  
85% (untrained),  
94.9% (trained) 

[Karpahy15]  
Spiking NN 
Accelerator 
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Computational Effort 

  Computational effort 
  7.5 GOp for 320x240 image 
  260 GOp for FHD 
  1050 GOp for 4k UHD 

~90% 

Origami a CNN accelerator 



Origami: The Architecture 
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Smooth Degradation with Vdd↓ 

0% bit flips 

1% bit flips 

67% energy improvement 

Really needing synthesis tools 
for exploring the approximation 
space for these «arithmetically 
dense» architectures 
1.  Numerical precision 
2.  Controlled error tolerance 
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Conclusions 

  ioT Energy efficiency requirements are super-tight 
  Technology scaling alone is not doing the job for us 
  Ultra-low power “traditional computing” architecture and circuits are 

needed, but not sufficient in the long run 

  Approximation for energy efficiency is apromising direction 
  SW and SW-abstractions are key 

  Need synthesis tools more than ever! 
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Next bottleneck - IO 
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Flexible and low-pin count interface layer – (Quasi)-Serial is better 

Key Challenges 
1.  Minimize Epb for IO 

2.  Maximize cluster 
idleness while doing IO 



  Source-synchronous, pseudo-differential, 
unterminated, Voltage Mode, 200mVpp, 1/8 rate 
CLK, self-calibrating PLL-based phase generator 

ULP Serial Phy 

25 Departement Informationstechnologie und Elektrotechnik 

On 36-inch SMA cable 

  A 0.45-0.7V 1-6Gb/s 0.29-0.58pJ/bit Source Synchronous Transceiver 
Using Automatic Phase Calibration in 65nm CMOS  (0.15mm2) 

  Low-cost SIP+die stacking option for processor 
+ memories + sensors becomes viable 

BER <10-10 with 
0.15UI timing margin 


