

SAMSUNG

Logic Synthesis in the Twilight of Moore's Law Near-threshold, Heterogeneous, 3D Design Looking for a New Toolbox

Luca Benini

IIS-ETHZ & DEI-UNIBO

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Minimum energy operation

Near-Threshold Computing (NTC):

- **1.** Don't waste energy pushing devices in strong inversion
- 2. Recover performance with parallel execution

PULP – Parallel Ultra Low Power

Open Source Hardware & Software

NT but parallel \rightarrow Max. Energy efficiency when Active

+ strong PM for (partial) idleness

1			[2]	[3]	[4]	[5]	This Work	OI 28nm
	FLL ↓ ^{50μr}	Technology	CMOS 32nm	CMOS 28nm LP	FD-SOI 28nm flip-well	FD-SOI 28nm conventional-well	FD-SOI 28nm flip-well	vell nm
	70μm JTAG TAP 1.3 mm	Data format	2x 32-bit	4x 32-bit	32-bit	32-bit	32-bit	m²
		# of cores	1	1	1	4	4	1.15V .15V)
		I\$/D\$/L2	8K/8K/n.a.	16K/32K/256K	4K/4K/n.a.	1Kx4/16K/16K	1Kx4/48K/64K	75V
		Voltage range (SRAMs)	0.28V – 1.0V (0.5V – 1.0V)	0.6V - 1.05V	0.4V - 1.3V	0.44V – 1.2V (0.54V – 1.2V)	0.32V – 1.15V (0.45V – 1.15V)	(TCDM)
		Max frequency	915 MHz	1.2 GHz	2.6 GHz	475 MHz	825 MHz	TCDM)
		Best power density	170 µW/MHz	58 µW/MHz	62 µW/MHz	65 µW/MHz	20.7 µW/MHz	ы (тә) К
		Best performance	1.8 GOPS	3 GOPS	2.6 GOPS	1.8 GOPS	3.3 GOPS	-710 MHz 5 - 825 MHz
	at at at at	Peak energy efficiency (MAX)	11.7 MOPS/mW @ 50 MOPS	43.1 MOPS/mW @ 230 MOPS	16.1 MOPS/mW @ 460 MOPS	60 MOPS/mW @ 25.6 MOPS	193 MOPS/mW @ 162 MOPS	6 - 85 mW
	國 國 國 國					ige il	MAA FDD. 0.	9 - 480 MVV

ISSCC15 (student presentations, Hot Chips 15, ISSCC16 (paper+student presentation)

Variability!

Temperature awareness BB/leakage management is essential

Synthesis Challenge

- An extensive set of parameters to consider:
 - Supplies, Poly biasing, Body biasing, Gate sizing
 - Subject to temperature, reliability, mission profile constraints

(Vdd, Pb, BB) choice becomes a power-delay trade off exercise

Conditions

- 28nm UTBB FDSOI
- $V_{DD}^{\min}(0.5V) < V_{DD} < V_{DD}^{\max}(1.3V)$
- $P_{b}^{\min}(0) < P_{b}^{k} < P_{b}^{\max}(16nm)$
- $= B_b^{\min}(0) < B_b^{\max} < B_b^{\max}(2.0V)$
- Pdyn/Pstat ratio = 50%
- Power, Perf corners
- An optimized design means:
 - Maximize performance for given power
 - Minimize power for given performance
 - Area constraint
- The optimum vector is a function (Vdd, Pb, BB)
 - Strongly dependent on chosen corners
 - Static + Dynamic

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

extremely adverse corners and ease MC-MM optimization

Supply

Ext cap

1.8V

1µF

ULP Bottleneck: Memory

256x32 6T SRAMS vs. SCM

- "Standard" 6T SRAMs:
 - High VDDMIN
 - Bottleneck for energy efficiency
- Near-Threshold SRAMs (8T)
 - Lower VDDMIN
 - Area/timing overhead (25%-50%)
 - High active energy
 - Low technology portability
- Standard Cell Memories:
 - Wide supply voltage range
 - Lower read/write energy (2x 4x)
 - Easy technology portability
 - Major area overhead (2x)

Need help exploring memory tradeoffs!

Approximate Computing to the Rescue

Approximate → Adequate

Less-than-perfect results perceived as correct by the users e.g. image processing (filtering)

RGB to GRAYSCALE

RGB to GRAYSCALE (+ 10% error)

Approximation is not always acceptable
→ Application and program phase dependent!

Approximate Storage?

Retention voltage

	Retention		
SCM	0.25V		
6T-SRAM	0.29V		

 Probability of flip-bit error on a single bit during read/ write operations

Voltage (V)	0.50	0.55	0.60	0.65	0.70	0.75	0.80
P(flip-bit) SCM	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P(flip-bit) 6T	0.0037	0.0012	0.0003	5.24e-5	4.35e-6	4.16e-8	0.0

Energy vs. Precision tradeoff \rightarrow big range!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acceleration

Closing The Accelerator Efficiency Gap with <u>Agile</u> Customization

CPU

Accelerator Gap

Learn to Accelerate

 Brain-inspired (deep convolutional networks) systems are high performers in many tasks over many domains

Flexible acceleration: learned CNN weights are "the program"

- Computational effort
 - 7.5 GOp for 320x240 image
 - 260 GOp for FHD
 - 1050 GOp for 4k UHD

Origami a CNN accelerator

ETH

image bank -

others -

6.2%

SoP units

31.8%

- 12-bit signals sufficient
- Input to classification double-vs-12-bit accuracy loss < 0.5% (80.6% to 80.1%)

Smooth Degradation with Vdd

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ALMA MATER STUDIORUM Università di Bologna

0% bit flips

67% energy improvement

- ioT Energy efficiency requirements are super-tight
 - Technology scaling alone is not doing the job for us
 - Ultra-low power "traditional computing" architecture and circuits are needed, but not sufficient in the long run
- Approximation for energy efficiency is apromising direction
 - SW and SW-abstractions are key
- Need synthesis tools more than ever!

Flexible and low-pin count interface layer – (Quasi)-Serial is better

ULP Serial Phy

 A 0.45-0.7V 1-6Gb/s 0.29-0.58pJ/bit Source Synchronous Transceiver Using Automatic Phase Calibration in 65nm CMOS (0.15mm²)

 Source-synchronous, pseudo-differential, unterminated, Voltage Mode, 200mVpp, 1/8 rate CLK, self-calibrating PLL-based phase generator

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Low-cost SIP+die stacking option for processor
 + memories + sensors becomes viable

